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The spectral turbulent diffusivity (STD) theory, originally deduced from a spectral 
generalization of the gradient-transfer theory (Berkowicz & Prahm 1979), is here 
derived from a basic concept of turbulent mixing for the case of homogeneous turbu- 
lence. The turbulent mixing is treated in a way similar to Prandtl’s mixing-length 
concept. The contribution to the turbulent flux from eddies of different length is 
represented by a linear superposition. The spatial variation of the concentration 
distribution is described in terms of Fourier series. This procedure results in the 
spectral diffusivity formulation, which is Eulerian and scale dependent. If the con- 
centration distribution is approximated by a truncated Taylor expansion instead of 
an exact representation by the Fourier series, the gradient-transfer approximation 
is retrieved. 

The turbulent energy density, as function of the eddy length, is related to the eddy 
transport velocity and a probability of the occurrence of the eddies. The eddy trans- 
port velocity, derived from the relation between the energy spectrum and the Lagran- 
gian correlation function, is used for computation of the spectral turbulent diffusivity. 
The turbulent energy spectrum is approximated by the inertial sub-range form ( - $ 
law). The STD coefficient obtained here has, for large wavenumbers, a slope of k- t  as 
predicted previously. 

1. Introduction 
In  spite of more than 50 years’ history, the problem of diffusion in a field of turbulent 

motion still does not have any unique solution. Even in the most simple case of homo- 
geneous and stationary turbulence, t,he problem is far from a trivial one. Theoretical 
analyses of the diffusion of material in a turbulent flow have developed along two main 
lines: the statistical theory and the gradient-transfer (K-theory) approach. 

The statistical theory, as formulated by Taylor (1921), is based on the statistical 
treatment of particle motion in a turbulent flow. It gives answers in terms of the 
standard deviation of particle displacement. Many of the properties of turbulent 
diffusion can be resolved by this statistical approach; however, difficulties arise when 
modelling of turbulent dispersion under more general conditions is attempted. 

Studies of transport of atmospheric pollutants often require treatment of non- 
homogeneous and non-stationary flows. Also emission from several sources and 
physical and chemical transformations must be accounted for. Such problems are 
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difficult or even impossible to model in terms of Taylor’s statistical theory, and 
description based on an Eulerian model is more suitable. 

In  recent years, several sophisticated methods for description of turbulent diffusion 
have been proposed, for example methods based on the so-called higher-order closure 
approximation (Lewellyn & Teske 1976), direct-interaction approximation (Roberts 
196 1 ), random-walk model (Monin & Y aglom 1965) or renormalized perturbation 
methods (Phythian & Curtis 1978). These theories, however, are not frequently 
applied in practical studies of diffusion, e.g. in air pollution modelling, possibly 
because of their high level of complexity. However, one should note the first attempts 
to formulate a spectral diffusivity equation by Monin (1955, 1956) and later by 
Schonfeld (1962). 

The aim of the present research is to formulate a theory of turbulent diffusion for 
practical applications in air pollution modelling, a theory which reveals the essential 
features of turbulent diffusion, but which as far as possible preserves the simplicity 
and flexibility of the K-theory formulation. 

2. K-theory approach 
The most widely used Eulerian description of turbulent diffusion is based on K -  

theory. The transport of pollutant concentration is given by the continuity equa- 
tion 

ac _ -  - - div (v .  c) + div (K.grad c) + S + Q 
at 

where v is the vector of the mean flow velocity, K the eddy diffusivity tensor and S 
and Q are terms describing sinks and sources, including physical and chemical 
processes. 

The second term on the right-hand side of ( I )  describes the turbulent diffusion and 
results from the so-called gradient-transfer approximation. The gradient-transfer 
approximation is based on the hypothesis of a turbulent flux proportional to the 
gradient of the concentration. The earliest attempts to use the gradient-transfer 
approximation for atmospheric diffusion are due to Schmidt (1925) and, since then, 
numerous studies have been undertaken (for a review, see, for example, Pasquill 
1974). 

Because of its flexibility, the K-theory approach is widely used for modelling 
atmospheric dispersion. The use of the K-theory, however, is limited by serious 
restrictions. The theory is based on the analogy of turbulent diffusion to molecular 
diffusion (Fick’s law); this analogy is, in fact, a very poor one. Molecular diffusion is 
caused by microscale motion. Turbulent diffusion, on the other hand, is produced by 
eddies of usually a broad range of sizes. If the size of the turbulent eddies responsible 
for the diffusion is small compared with the length scale of the diffusing distribution, 
the K-theory approximation is appropriate. In  the case of eddy diffusion in the 
atmospheric boundary layer, horizontal motions with a length scale of 100m t o  
1000 m can dominate the diffusion process and use of the K-theory approach for a 
narrow distribution is not valid. From the statistical theory, it is known that the size 
of a plume, defined by the standard deviation of the concentration distribution, 
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increases initially linearly with the time of travel. Taking only the diffusion term of 
(1) and considering a one-dimensional and homogeneous case, we have 

The solution of (2) for an instantaneous point source of a strength Q a t  y = 0 is the 
well-known Gaussian distribution 

where the standard deviation f~ is given by 

0- = (2Kt)J. (4) 

Thus, the use of the K-theory approximation results in a distribution with a standard 
deviation proportional to the square root of the travel time. This is in contradiction 
to the linear initial plume growth predicted from the statistical theory. A linear growth 
of the horizontal dimensions of a narrow plume can be obtained if K is allowed to be 
a linear function of the time of travel or distance from the source. However, such a 
diffusivity cannot be treated as a physical parameter of the turbulent flow, because a 
stationary and homogeneous turbulence must be characterized by time- and space- 
independent parameters. The time-dependent diffusivity can be used as a modelling 
tool only for simulation of dispersion in very simplified cases. An attempt to solve the 
problem of turbulent diffusion was given by Richardson (1926). He introduced the 
idea of diffusivity depending on separation of particles. The approach proposed by 
Richardson and valid for diffusion of puffs results in a solution which does not give 
an unique concentration distribution, and the solution is not coupled to an advection- 
diffusion equation of the type given by (1). 

3. The spectral turbulent diffusivity concept 
The main problem arising in the modelling of turbulent diffusion is the proper 

description of scale dependence of the diffusion process. In  two recent papers (Berko- 
wicz & Prahm 1979; Prahm, Berkowicz & Christensen 1979), a new theory has been 
formulated, the spectral turbulent diffusivity (STD) theory, which makes it possible 
to apply the diffusivity formulation for turbulent diffusion taking the scale dependence 
into account, but without losing the Eulerian properties. The theory has been formu- 
lated on the basis of a phenomenological understanding of the physics of turbulent 
diffusion. In this section, a short rksumk of the STD theory is given and, in the following 
section, a new and more direct derivation is presented. 

We will here restrict the discussion to a one-dimensional homogeneous diffusion. 
A direct derivation of the non-homogeneous case needs some further studies, and the 
work is in progress. 

The Fourier transform of ( 2 )  is 

-- - - k2KE(k, t ) ,  
Z ( k ,  t )  

at 



436 R. Berkowicz and L. P. Prahm 

where E(k,t)  is the amplitude of the Fourier mode with wavenumber k .  The scale 
dependence of the turbulent diffusivity results from the varying size of eddies which 
are effective in the diffusion process in relationship to changes in the size of the con- 
centration distribution. Only small eddies are effective for diffusion of a narrow 
distribution, while larger eddies become active when the distribution becomes broader. 
The scale of the concentration distribution depends on the relative strength of Fourier 
modes of different wavenumbers. A narrow dish-ibution is characterized by all modes, 
also those with high wavenumbers, while a broad distribution can be described by 
Fourier modes only with relatively small k-values. In  order to account for the scale 
dependence of the turbulent diffusivity, we have postulated that the eddy diffusivity 
K in ( 5 )  is different for different Fourier modes of the concentration distribution. We 
have introduced the spectral turbulent diffusivity coefficient K(L). The equation 
corresponding to ( 5 )  is now 

ac 
- at ( k ,  t )  = - kZK(k) E(k, t ) .  

The STD coefficient K ( k )  is a physical parameter as it depends only on the state of 
the turbdlent flow. Equation (6) can be converted to real space, resulting in an integro- 
differential equation 

where the turbulent diffusivity transfer (TDT) function is given by 

Equation (17)  is derived for the case of homogeneous turbulence. For the non- 
homogeneous case, the TDT function is not only a function of the difference of space 
co-ordinates, but also dependent on the position in space (Berkowicz & Prahm 1979). 
In  contradiction to the gradient-transfer formulation as given by (2), (7)  describes a 
process which is non-local in space. This is a characteristic property of turbulent 
transport caused by the finite size of the turbulent eddies. When the STD coefficients 
or the TDT function is specified, (6) or (7) is easy to apply in numerical modelling. 

The gradient-transfer formulation, as given by (2),  appears as a special case of the 
more general formulation given by (7) ,  because, when K ( k )  = const., ( 7 )  converts to (2). 

On the basis of empirical considerations, Richardson ( 1  926)  proposed that the rela- 
tive diffusivity coefficient introduced by him depends on the particle separation 1 as 
1%. Because the characteristic length scale in the formulation by Richardson is the 
particle separation, and the characteristic length scale in the STD theory is the wave- 
length of the concentration Fourier modes, we postulate by analogy that K ( k )  - k-* 
for large values of k. For small wavenumbers, however, the STD coefficients should 
converge towards a constant value, say KO.  The following form of K ( k )  is therefore 
proposed (Berkowicz & Prahm 1979) 

KO K ( k )  = - 
1 + Bk*’ (9) 

where B is a parameter to be estimated. Because the scale of the turbulence depends 
on the size of the long, most energetic eddies, it is reasonable to  assume that B cc k$, 
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FIGURE 1. Diagram illustrating the contribution of eddies of length 2 to the eddy flux a t  point y. 
Eddies starting from points y + p  and y - p  are shown. Only eddies originating in tho region 
(y - I ,  y +I) contribute. 

where k, is the wavenumber corresponding to the largest turbulent eddies. As pointed 
out (Berkowicz & Prahm 1979), the form given by (9) has been proposed as a working 
hypothesis. In  the next chapter, we present a more direct derivation of K ( k ) ,  and it 
appears that (9) is quite a good estimate. 

The application of the STD theory for plume dispersion was treated by Prahm et al. 
(1979). I n  order to model a time-averaged concentration in a plume, one has to take 
into account the ‘meandering’ of the plume owing to action of eddies larger than the 
size of the plume. Such an effect can be ascribed to phase fluctuation of Fourier modes 
of the transversal cross-section of the plume. I n  order to  describe these turbulent 
fluctuations, we have introduced a spectral phase diffusivity coeficient. For detailed 
discussion of the plume model, the reader is referred to the original paper. Discussion 
of the geometry and rate of growth predicted by the STD theory is also given there. 
The rate of growth is in accordance with the main findings of the statistical theory, 
but the shape of a narrow distribution appears in general to be non-Gaussian. 

4. Derivation of the spectral turbulent diffusivity 
In  this section, we present a direct derivation of the spectral turbulent diffusivity 

formulation. The procedure presented here is, to some extent, similar to that applied 
by Prandtl (1925) when he formulated his famous ‘mixing length’ concept. Further 
development of his procedure, avoiding some essential simplifications, leads directly 
to the concept of the spectral turbulent diffusivity. 

We start again with considering a turbulent mixing of a one-dimensional distribution 
in a field of homogeneous and stationary turbulence. An eddy of a length 1 is able to 
transport material (or another property, e.g. momentum) a t  a distance equivalent to or 
less than its length. The turbulent mixing is a stochastic process and one can consider 
this as a linear superposition of the transport caused by eddies of all lengths. Let the 
probability density of occurrence of an eddy of length 1 be F(1). 

We consider the contribution of eddies of a given length 1 to the turbulent flux at  a 
point y. Only those eddies which are situated in the region (y - 1, y + 1)  can thus con- 
tribute to the flux a t  y (figure 1) .  Those of the eddies originating at  an infinitesimal 
interval dp inside the region, appear with the weight F(1) d p l l .  We denote the charac- 
teristic velocity of the eddy by v(Z). The flux a t  y caused by eddies with starting points 
a t  y + p and y - p can now be expressed as 

- N) c ( y  + P )  W )  dP/l+ v(1) C(Y - P )  F ( 4  dPb. (10) 
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In order to find the total flux at  y, we integrate with respect to p (from 0 to Z), and 
next integrate over all values of 1. The flux at  y can now be written as 

From the continuity equation, we have 

and, after differentiation with respect to y and integration with respect top, we obtain 

ac 

at 0 
- = J- rn q) {c( y + I) - c( y) + c( y - 1) - c( y)} dZ. 

Equation (1 3) is an integro-differential equation and thus non-local in space; however, 
it is still local in time. It is obvious that this is a simplification which is justified when 
the eddy transport is so fast that one may neglect the concentration variation in time, 
during a one-eddy ‘passage ’. Time delay for transport through the single eddies can 
be accounted for in (10) by substituting c(y+p, t-p/w(Z)) and c(y-p, t -p/v(Z))  for 
c(y+p)  and c(y-p), respectively. This would result in a diffusion equation which is 
non-local in time. Introduction of the time non-locality is not complicated from a 
mathematical point of view, but gives serious difficulties in numerical modelling. In 
the following, we will neglect the time non-locality because the averaging times used 
in many practical studies of turbulent diffusion are longer than an eddy transport 
time, and it appears that introduction of the space non-locality alone explains many 
features of the turbulent diffusion. 

We will proceed further with discussion of (1 3). The space differences of the con- 
centration distribution appearing in (1 3) can be evaluated by expanding the concen- 
trations in Taylor series 

a Y  aY I ac 
c(y+Z) = c(y)+z-++z2-2+..., 

I ac 

aY aY2 
d Y - 0  = c(y)-Z-++Z~-+.... 

If the concentration distribution is relatively smooth, we may restrict the expansion 
to second-order terms with respect to 1. With this approximation, (13) becomes 

ac a2c 
- at = [ IOrn W(Z) ZP(Z) dZ] ay2. 

One can immediately see that (15) is identical with (2) if 

Thus a second-order approximation of the concentration distribution leads to the 
gradient-transfer formulation with the diffusivity given by ( 16). This approximation, 
however, is not valid when the distribution changes strongly on the length scale for 
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which the turbulence is still significant. In  order to evaluate (13) exactly, we apply 
now a Fourier series expansion to the concentration distribution in (13) : 

00 

c(y)  = 1 E(k) exp ( i ky )  dk. 
--oo 

The Fourier transform of (13) is 

One can see that (18) is now identical with (6) if 

Comparing (19) with (16), we can see that the STD coefficient results from application 
of a low-pass filter to the integral expression in (16). Only eddies of a size I < 277/k 
contribute significantly to mixing of a Fourier mode with a wavenumber k. 

The derivation of the STD theory presented here is based on Prandtl's concept of 
'mixing length', but where Prandtl uses an approximation for the concentration 
variation in space by a truncated Taylor expansion, we use an exact evaluation by 
means of infinite Fourier series. 

5. Eddy energy density and transport velocity 
The main idea of the STD theory appears from ( 1  8) and (19). The turbulent diffusion 

can be modelled by an Eulerian diffusion equation with a k-dependent diffusivity 
K(k). In  order to determine K ( k ) ,  both P(1) and v(1) have to be specified. However, 
neither P(I),  the probability of occurrence of eddies of length 1, nor v( l ) ,  the effective 
transport velocity associated with eddies of length I ,  can be measured or determined 
directly. Therefore, we have to find a way in which these quantities can be related to 
other available quantities. 

( a )  The eddy energy density 

The contributions of eddies of length 1, 1 + dl to the total variance a: of velocity fluc- 
tuations can, by means of v( l )  and F( l ) ,  be expressed as 

where 
Al(vi) = &v2(Z) P(2) d1, 

&v2(1) F( l )  = € ( I )  

is the energy density of eddies of length 1. On the other hand, we can express the 
contribution to CT; of turbulent fluctuations by means of the energy spectrum E,(K), 
where K is the wavenumber, 

Ak(C:) = E , ( K ) d K .  (22) 

An eddy of the length I is related to a spectral component with a wavenumber K = n/l 
because the period of velocity fluctuations in such an eddy must be 21. With this and 
relations (20) and (22) in mind, we obtain 

&v2(1) P(Z) = ; E,(77/l). 
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We have now established the relation between v2(l)  F(1) and the energy spectrum 
Eu(7r/’Z). In  the expression (19) for the spectral turbulent diffusivity, the product 
v(1) F ( l ) ,  however, appears. We have thus to  find a way to determine the eddy trans- 
port velocity v(Z). 

( b )  The eddy transport velocity 

Comparing (19) with (16), we see that the spectral diffusivity K ( k )  converges to the 
constant value K for k + 0. This is the diffusivity that characterizes dispersion of a 
concentration distribution after a long time of diffusion. For the long time limit, we 
can use the expression for diffusivity obtained from Taylor’s statistical theory (Taylor 
1921; Batchelor & Townsend 1956), 

K = RL(t) d t  = gi7L, (24) 

where R,(t) is the Lsgrangian correlation function and 7 L  is the integral time scale. 
In  (16), the diffusivity K is expressed in form of contribution from eddies of all 

lengths. In  (20), the contribution of eddies of length 1 to the variance g: is given. 
This suggests that also RL(t) can be expressed in form of contribution from all eddies. 
Comparing (24) with (16),  we can put forward the following relationt 

J O  

where ~ ( 1 ,  t )  is the correlation coefficient associated with 
which has the integral time scale equal to 21/v(l), i.e. 

IOrn y(1, t )  at = 2Z/v(Z). 

an eddy of the length l and 

( 2 6 )  

In  5 4, we have assumed that the transport in an eddy of length Z takes place with a 
constant velocity v(Z) for the distance 1. As the transport is equally probable in both 
directions, i.e. for the distance 21, it means that there is a perfect correlation for a time 
2Z/v(l). This suggests the following form for q(l ,  t ) :  

1 for t 6 2l/V(Z)) r 0 for t > 21/41) 
r(l, t )  = 

Substituting (27) into (25), we obtain 

m 1 

0 
EL@) = I1 &?P(Z’) F(1’) dl’ = CT; -J- e(l’) dl’, 

where 
t = 2Z/v(Z). 

(27) 

If RL(l) and the energy of the eddies e(1) are known, we can by means of (28) and (29) 
determine v(Z), 

t This relation was drawn to our attention by Dr M. W. Reeks, resulting in significant improve- 
ment in the paper. 



On the spectral turbulent diffusivity theory 44 I 
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FIGURE 2 .  Schematic representation of the energy spectrum E(K).  The inertial sub-range form 
( r f )  is extended from k ,  to infinity; k, is the wavenumber at which the turbulent energy is 
produced. No energy is assumed to be transferred to wavenumbers smaller than k,. 

( c )  The inertial sub-range relations 

W'e adapt a simple form of the energy spectrum and the correlation function. It is 
known that in the inertial sub-range the energy spectrum is proportional to K-%. We 
have decided to extend the ddependence  to the whole spectrum. The energy spectrum 
applied here is shown schematically in figure 2. We assume that the turbulent 
energy is supplied a t  a wavenumber k, = 7r/l,,  where 1, is the length of the longest 
eddies, and the energy is transferred toward the shorter eddies according to the K-9 
law, but no energy is transferred to eddies longer than 1,. From (23) we thus obtain 

The inertial sub-range is in fact not valid for very small eddies. I n  this range, the so- 
called dissipation range, the transfer of the turbulent energy to heat becomes the 
dominating process and E(K) is known to decrease faster than K - ~  (Hinze 1975). The 
molecular diffusion dominates here, and in practical studies of atmospheric diffusion 
such small scales are usually of no importance. 

A finite lower limit of the eddy sizes in fact exists as a result of action of the viscous 
forces on the eddy motion. Because this size is much smaller than l,, we can usually 
assume it  to be zero. However, further on in this section, we make use of this finite 
lower limit when the dissipation rate is evaluated. 

Substituting (30) into (28), we obtain 

We have decided to use here a linear form for RL(t ) ,  namely 
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where v, is the velocity associated with eddies of length I,. The integral time scale 
of RL(I) given by (32) is 

rL = -/om RL(t) = Zm/vm. (33) 
1 

4 
From (31) and (32), we obtain 

v(Z) = V,(Z/Z,)+. (34) 

Equation (34) establishes the relation between v(Z) and Z which we have been looking 
for. A relation similar to (34) has been reported early by Inoue (1950). He introduced 
the concept of turbulons as being elements of the turbulent motion and in fact equiva- 
lent to what is usually understood by eddies. The turbulons are characterized by a 
length scale Z and a velocity associated with them v(Z). Inoue makes the assumption 
that the lifetime of the turbulonsisproportional to Z/v(Z). After this time, the turbulons 
lose all the energy, which is transferred to smaller turbulons. Inoue furthermore 
assumes that the energy dissipation rate E is constant for all the turbulons. As the 
energy of a turbulon is proportional to v2(Z), he obtains 

(35) E ‘V v2(Z)/(Z/v(Z)) = v3(Z)/Z = const. 

Inoue (1950) shows furthermore that, assuming a perfect correlation for turbulons 
for a period of time equal to the lifetime and with v(Z) given by (35), a linear Lagrangian 
correlation function is obtained. 

A simple interpretation can be given of the idea of the constant dissipation rate. 
I n  the inertial sub-range neither production nor energy loss takes place within the 
total range of eddies. The energy is only transported from large to small eddies through 
a cascade process. Assuming that only interaction between eddies of neighbouring 
size can occur, we can conclude that the dissipation rate is constant for eddies (turbu- 
lons) of different size inside the inertial sub-range. 

(d  ) The relation between v, and rV 

The idea of relating v(Z) to the rate of dissipation can be used in order to establish a 
relation between v,, the maximum eddy transport velocity, and go. It is known that 
the dissipation rate can be expressed as (Hinze 1975) 

where v is the kinematic viscosity, and k, is introduced as the upper limit of the wave- 
numbers of the energy spectrum. This is equivalent to the assumption that above k, 
a total dissipation of the turbulent energy takes place due to the viscous forces. With 
the K-* law for the energy spectrum in the range from k, to k,, we obtain 

E 2: lJcT:k;k$. (37) 

I n  evaluation of the integral in (36), we have made use of the fact that k ,  % k,. 
Following the concept of Inoue (1  9501, we can also write 
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FIGURE 3. The spectral turbulent diffusivity K ( k )  estimated from (44). Note that K ( k )  decreases 
like k-4 for large k values. The expression given by (9) is plottedwithB = 0.87k;*.K(k) isshown 
to be well approximated by the simple exponential expression (48), also with H = 0.87k;:. -, 
equation (44); -.-.-, equation (9); ----, equation (48). 

I n  (38), we have put the energy of the eddies equal to  +vz and the lifetime to 21/v, 
in accordance with our previous assuqptions. 

The kinematic viscosity is governed by motions of the scale I, = r / k ,  with velocities 
v(Zd) = vd. From dimensional reasoning, we can get 

v = V a l ,  = nvd/ka. (39) 

On the other hand, according to  Inoue, we have 

From (37), (39) and (40), we obtain 

E = 2n2r;km. 

The relationship (41) can be put forward from dimensional arguments (Pasquill 1974) 
and there exists some experimental evidence confirming this relationship for the 
vertical component of wind velocity fluctuations (Hanna 1968). The numerical con- 
stant reported in the literature is quite different from that in (41)) but k;1 refers here 
to a length scale appropriate to the turbulent fluctuations under consideration, while 
the length scales reported in the literature are estimated from time-series energy 
spectra by means of Taylor’s hypothesis (Pasquill 1974) thus yielding in fact the 
longitudinal (along the main wind direction) scale. 
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Comparing (41) with (38)) we obtain 

urn = 2nuw. (42) 

This relationship has already been postulated by Prahm et al. (1979) and compares 
very well with the experimental observations by Markee (1963) if urn is interpreted 
as the maximum velocity fluctuation. However, the relationship between v, and a,, 
given by (42) depends on the rather crude estimation of the kinematic viscosity given 
by (39). Therefore (42) should be considered with caution. 

( e )  T h e  STD coeficient 

The spectral turbulent diffusivity can now be computed 

We recall (23) where €(I) = (n/12) E ( k ) .  By using the expression (34) for v( l ) ,  (30) for 
e(1) and (42) for v,, we obtain 

The special turbulent diffusivity, K(lc), from (44), is plotted in figure 3. 

(f ) Turbulent diffusivity transfer func t ion  

The turbulent diffusivity transfer function can be computed by substituting in (8) 
for K ( k )  from (44). From the identity 

we obtain 

. .  
where s = y- y'. 

It is interesting to note here that the turbulent diffusivity transfer function is zero 
for Jy-y'J 2 1,. This is the consequence of the fact that the turbulent energy has a 
sharp cut-off for eddies of the length I,. 

6. Discussion 
The spectral diffusivity coefficient given by (44) is based on the assumptions we 

have made about the energy spectrum and the relation between the Lagrangian 
correlation function and correlation coefficient for separate eddies. Some conclusions 
about the behaviour of K ( k )  can be drawn from (44). 
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(a)  The small wavenumber limit of K ( k )  

For k = 0,  we have 

This result could also have been obtained already from (24) with the Lagrangian 
correlation function given by (32) and relation (42) for v,. As pointed out by Prahm 
et al. (1979), the expression (45) for KO is in good agreement with the semi-empirical 
formula for the vertical diffusivity reported by Smith (1977); K O  is the diffusivity 
which describes diffusion in the case of a concentration distribution with the character- 
istic length scale much longer than the scale of turbulence &).  Such conditions are 
usually satisfied in the case of the vertical diffusion from ground sources. Therefore, 
the interpretation of the vertical diffusion results, in terms of the gradient-transfer 
theory, as done by Hanna (1968) and Smith (1977)) can be used for estimation of the 
diffusivity K O .  

( b )  The large wavenumber limit of K ( k )  

Within the limit of k 9 k,, we may replace in (44) the term ([sin ,tk1]/$k1)2 by a low- 
pass box filter of width approximately equal to 2n/k, and as a consequence obtain 

K ( k  9 k,) (k/km)-Q. (47) 

For k 9 k,, we thus obtain again the k- )  shape which was previously postulated by 
Berkowicz & Prahm (1979) on the basis of mainly dimensional arguments. In  figure 3, 
K ( k )  is plotted according to the simple formula (9) with the coefficient B = 0.87k;Q. 
The agreement with the curve corresponding to (44) is very good for k > 3km. The 
somewhat larger disagreement for smaller wavenumbers is, however, not important 
because the product k2K(k) appears in the diffusion expressions, making the deviation 
less significant. In  practical applications, the simple formula given in (9) could thus 
be used. Several simple analytical expressions can approximate (44) very well. An 
example is ~ ( k )  = K,[I - exp ( - ~-1(k,/k)Q)]. 

The curve corresponding to (48) is also shown in figure 3. 

(48) 

( c )  Relation to the Lagrangian correlation function 

The expression for K ( k )  given by (44) is obtained using the specific form for the 
Lagrangian correlation function and the energy spectrum. For more general cases, 
(43) can be used, with w(1)  computed by means of (28) and (29). The value of K O  is 
determined by the integral time scale of the Lagrangian correlation function. The 
shape of K ( k )  for k 9 k,,, depends, however, on the shape of RL(t) for t -+ 0 and the 
shape of the energy spectrum in the inertial sub-range. With the K-* law for the 
energy spectrum, any Lagrangian correlation function with a linear shape at  t + 0 
will result in the k-4 behaviour of K ( k )  for k 9 k,. A direct relation between the 
Lagrangian correlation function and the spectral turbulent diffusivity can be given 
using (28) and (29) to determine e(Z). 
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where 
7, = 21m/vm 

and v is expressed as a function of r according to (29). 

sivity which is used in Lagrangian diffusion models 
Equation (49) can be compared with the expression for the time-dependent diffu- 

K(t) = RL(7)dT .  (50) s: 
By comparing (49) and (50), it can be seen that the k-dependent diffusivity corresponds 
to the use of a correlation function modified by a k-dependent filter. I n  the expression 
(50) for the time-dependent diffusivity, the upper limit of the time integral determines 
the diffusivity. 

(d  ) Heisenberg's spectral eddy viscosity 

The idea of a spectral diffusivity is known in theories of the turbulent energy transport. 
According to the hypothesis of Heisenberg (1948), the amount of energy, W ( k ) ,  trans- 
ferred per unit time from disturbances with wavenumber smaller than k to the other 
disturbances (called the spectral energy-transfer function) can be expressed as 

where v(k) is the spectral eddy viscosity which plays a role similar to the eddy diffusivity 
in turbulent transport of a passive contaminant. Heisenberg assumed that the con- 
tribution to the eddy viscosity due to the velocity disturbances with a wavelength 
1 = 2 n / ~  is proportional to the product of the eorresponding 'mixing length', 1, cc l / ~ ,  
and the characteristic 'velocity scale' vK of the disturbances. Using this idea together 
with dimensional considerations, Heisenberg postulates the following formula: 

v(k) = y"s ( E ( K ) k C 3 ) + d K ,  

where yH is a dimensionless constant. It can easily be shown that, in the inertial sub- 
range, whereE(K) cc K-*, v(k) behavesas k-*, i.e. like the spectral turbulent diffusivity. 

k 

7. Applications of the STD theory 
The STD theory was developed to  model puff and plume dispersion in homogeneous 

turbulence (Berkowicz & Prahm 1979; Prahm et al. 1979). The results are in agree- 
ment with predictions of the statistical theory but, in general, the STD theory gives 
non-Gaussian distributions. This is an interesting feature which should be investigated 
experimentally, 

A preliminary study seems to indicate a non-Gaussian shape (Prahm & Berkowicz 
1979), but a final experimental proof still remains to be demonstrated. Such studies 
are difficult because of the non-stationarity and non-homogeneity of the real atmo- 
sphere. These problems might be overcome in laboratory studies which are now 
initiated. The theoretical interpretation of experimental data should preferably be 
performed in terms of Fourier analysis as previously discussed (Prahm et al. 1979, 3 9). 

Presently, the theory is being applied to model transport of pollutants on a global 
scale in a two-dimensional meridional troposphere-stratosphere model (Berkowicz, 
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Prahm & Louis 1979). Use of a proper, scale-dependent diffusivity is here of importance. 
The scale of eddies ranges from a hundred to  several thousand kilometres and applica- 
tion of a conventional K-theory is, in this case, very doubtful. The STD theory was 
in the latter study adapted for non-homogeneous turbulence, but in a somewhat 
primitive way. A more detailed presentation of the non-homogeneous case is in 
preparation. 

The STD theory is especially easy to apply in modelling turbulent transport when 
a numerical technique based on the so-called pseudospectral method is used to evaluate 
the space derivatives occurring in the transport equation. The pseudo-spectral tech- 
nique has been applied with success for modelling of transport of air pollution 
(Christensen & Prahm 1976; Prahm & Christensen 1977; Rerkowicz & Prahm 1978). 

8. Resume and conclusions 
The spectral turbulent diffusivity theory is derived on a simple mixing-length 

concept using Fourier expansion of the concentration distribution. It is shown that 
the k dependence of the diffusivity results from the hypothesis that the turbulent 
mixing is caused by the effect of a linear superposition of transport by eddies of 
different length. The gradient-transfer approximation appears as a special case of 
the spectral turbulent diffusivity theory when the size of the turbulent eddies is small 
compared with the size of the diffusing distribution. The shape of the spectral turbulent 
diffusivity is computed using a simplified form of the turbulent energy spectrum, 
namely K-* dependence for the whole spectrum above k,, where k ,  is the wave- 
number a t  which the turbulence is produced. A sharp cut-off of the energy spectrum 
is assumed for wavenumbers below k,. The spectral turbulent diffusivity exhibits, 
for large k ,  a slope of k-4 in accordance with predictions from previous studies. The 
theoretical value of KO = K ( 0 )  is also found to agree with empirical results and 
previous theoretical estimates. It is shown that the tuIbulent diffusivity transfer 
function, (7),  is zero for Jy-y’I 2 I,, a consequence of the assumption that the 
maximum size of eddies is I,. 

The spectral turbulent diffusivity theory should be used in cases where it is important 
to account for the scale dependence of the diffusivity and a simple and practical 
Eulerian model is required. 

This work was financed by the Danish National Agency of Environmental Protec- 
tion. We would like to thank Marie Rille, who typed the manuscript. 
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